
The application of generalized Wronskians to single-site scattering theory

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1994 J. Phys. A: Math. Gen. 27 3787

(http://iopscience.iop.org/0305-4470/27/11/028)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 23:05

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/27/11
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


I. Phys. A Math. Gen. 27 (1994) 3787-3794. Printed in the UK 
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Abstract. The concept of the Wronskian determinant is generalized and shown to give rise 
to a projection operator which can be used in basis-function expansion schemes. This result 
is applied to relativistic single-site scattering theory and it is shown that formulae previously 
obtained on an d h o c  basis on be understood as special cases of a general Wronskian scattering 
identity. Finally, the form of the negativeenergy scattering matrix is discussed. 

1. Introduction 

Wronskians play a central role in the formulae of scattering theory, e.g. [1,2]. Two very 
different ways of viewing them can be distinguished. The first physical interpretation of 
the Wronskians encountered in scattering theory is that they are matrix elements of the 
(Schrodinger or Dirac) flux operators. However, this interpretation does not suggest how 
Wronskians will enter the formulae of scattering theory. Insight into this question can 
readily be gained from considering the second algebraic interpretation of the Wronskian. 

Nofation. The following notation has been adopted. Dirac four-component spinors are 
given a tilde, e.g. 6. Two-component spinors are given a bar, e.g. $,. Threecomponent 
real-space vectors are printed in heavy type and unit vectors given a hat, e.g. W(+). 
Matrices are underlined whenever their indices are suppressed e.g. 2. 

2. Wmnskian expansion 

The Wronskian determinant of Ifn] ,  a set of N scalar functions of a single independent 
variable x ,  is defined as 

where f,'") = (d/d.x)mf(n). 
If the functions in this set am linearly independent up to their Nth derivative then their 

Wronskian is manifestly non-zero. Conversely it will be zero if any one or more of the 
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functions involved can be expressed in terms of a linear combination of the others. It 
follows that if some function g ( x )  is known to be exactly expressible as a finite sum of 
some (f,} (as will always be the case if it is a solution of some Nth-order differential 
equation), then 

for any xo such that W[[f,}] # 0 and where W[g; [f,*]] signifies the Wronskian 
determinant where the place of the qth function (in the qth column) has been taken by 
the target function g which is to be expanded. 

The form of this identiry is in~guing.  Generally, expansion formulae rely on 
orthogonality relationships involving integration over some range of an independent 
variable, whereas, here, only differentials evaluated at a single value of x appear. Moreover, 
the Wronskian formula can be applied whenever it is known that a target function can be 
expressed as a combination of any other functions and not just when these form a complete 
orthonormal set. 

In fact, the Wronskian acts as a projection operator 

The concept of the Wronskian can be extended in a natural way to multicomponent 
functions of a single variable (such as the onedimensional solution of the Dirac equation or 
the asymptotic form of a three-dimensional solution decomposed into angular-momentum 
channels). For such functions, however, the Wronskian is no longer uniquely defined. For 
example, it is possible to define a determinant for each and every component, and hybrid 
Wronskians which involve derivatives of various components of the basis functions can be 
defined. Moreover, the definition of linear independence has to be generalized; because 
functions that may be linearly independent as far as one component is concerned may not 
be when another is considered (for example a function could have some components that 
were identically zero). 

Moreover, it can be useful to construct a hybrid Wronskian by replacing some or all of 
the rows of a single-component Wronskian with the value of other components (or lower 
derivatives thereof). This new Wronskian will still have the property of being non-zero 
only when the functions from which it is constructed are linearly independent, though now 
the exact specification that a set of functions must fulfil in order to qualify as linearly 
independent has changed. In the extreme case where N N-component functions form the 
expansion basis, the Wronskian can be written without any derivatives and equation (2) 
reduces to Kramer's rule for the solution of a set of linear simultaneous equations. 

Because they must yield the same expansions for a given basis, all families of Wronskian 
determinants must be identical to within common normalization factors. However, for any 
family, certain values of the independent variable will make these normalization pre-factors 
accidentally zero and the corresponding projection operators take the form 010. 

The marks of a good choice of Wronskian construction are that its zeros are remote from 
the range of the independent variable of interest and that it involves as few derivatives as 
possible. Moreover, to successfully expand a target function in a given basis, a convenient 
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set of criteria which unambiguously distinguish the basis functions from each other is 
required. It is this set of criteria that defines exactly what is meant by linear independence. 
Such a definition automatically follows whenever a ‘boundary-matching problem’ is set 
up in terms of the continuity properties of the target function. If such a problem can be 
formulated, it will certainly define a good Wronskian construction. 

For solutions of the isotropic Dirac Hamiltonian, it is easy to show that the non- 
relativistic definition of the Wronskian 

which involves radial derivatives of one component of the wavefunction only, is equivalent 
to the relativistic [3]  or two-component definition 

where GT signifies the transpose (row) spinor. 

3. The Wronskian scattering identity 

The role of Wronskians in scattering theory can now he understood. In particular, the 
conventional technique of ‘matching wavefunctions’ or ‘logarithmic derivatives’ at the 
muffin-tin radius RMT for a non-relativistic Hamiltonian with an isotropic finite-range 
potential 

(5) 
R2 -v* + v(r) v ( r )  = o r > R~~ 
2m 

(see, for example equation (5.25) in [4]), can easily be recognized as having the form of a 
Wronskian expansion quotient 

.SA + 1 
SA - 1 

Rkn, - R,nh 
Rk j ,  - RA j; 

cot@*) =I- = 

where A signifies the quantum numbers K and j~ [5]; these are more commonly encountered 
in relativistic theory 

(7) 

where d~ is the scattering phase-shift associated with the angular-momentum channel with 
quantum numbers K ,  j ~ ;  and j t ,  nr and h: are respectively the Bessel, Neumann and Hankel 
solutions of the spherical Bessel equation which constitute the free-space solutions of both 

e = J + , S ,  I J = I K I + ?  1 S , = K / ~ K [  m , = p  
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the Schrodinger and Dirac wave equations. The utility of the algebraic view of Wronskians 
presented here is that generalizations of formulae such as equation (6) can be written down 
immediately rather than derived at length from first principles. For example, the relativistic 
version of equation (6) can immediately be written down as 

The basic problem in scattering theory is that of characterizing the asymptotic behaviour 
of scattering solutions. This is equivalent to answering the question: ‘How can the members 
of a complete set of time-independent solutions of a scattering Hamiltonian labelled in 
terms of their asymptotic incoming flux be expanded in terms of a second complete set 
of eigensolutions, specified in terms of their asymptotic outgoing flux? In this approach, 
the scattering matrix s is viewed as the (unitary) transformation between the incoming and 
outgoing scattering solution bases. 

The wavefunction beyond the range of the potential is fully specified by the problem’s 
asymptotic boundary conditions. Moreover, it is not necessary to know the complete external 
solution in order to find the internal solution that matches it. Knowledge of either the 
asymptotic incoming or outgoing flux alone is sufficient. The required transformation 
between incoming and outgoing scattering solutions can be found by using a two-stage 
expansion procedure. First, a single incoming free-space wave i, is (incompletely) 
expanded beyond the range of the potential in terms of regular internal eigensolutions 
of the scattering Hamiltonian 

where @; is the full internal scattering solution with incoming asymptotic form i, and (&).I 
is the set of regular internal solutions. The Wronskian in the denominator of equation (8) is 
formed from all members of both specified sets. The notation used in its numerator signifies 
that the targeted incoming wave i; has been substituted for the uth regular solution. The 
irregular outgoing solutions are. required when forming both numerator and denominator to 
ensure that the basis spans the target expansion function, h i .  

This full internal solution can be expanded (beyond the range of the potential) in terms 
of free-space spherical waves. It is then possible to understand formulae previously derived 
piecemeal for anisotropic scattering as special cases of the following general Wronskian 
scattering identity: 
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where all Wronskians are evaluated beyond RMT but T is not so constrained. The s-matrix 
can be identified with the coefficient of if;, 

Note that no reference has to be made to the form of the Hamiltonian at any stage of 
the discussion. This is typical of the scattering-matrix approach to physical processes. The 
analysis does presume that the wavefunctions are regular within the range of the potential. 

4. Application to spin-polarized scattering 

As an example of the application of equation (lo), take the case of an isotropic electric scalar 
potential and a spherically-symmetric unidirectional spin-only magnetization, as studied by 
Strange et a1 [6] and later reviewed by Ebert and Gyorffy [3]. In this case, only two 
reg& internal solutions of the Dirac equation, 6+ and 6-, need be considered because 
the magnetization can be assumed to couple together only channels with a common value 
of e ,  the orbital an,dar momentum of their large or non-relativistic component [5,6]. 

Asymptotically, both of these have components in only two angular-momentum channels 
A+ = (K,  p )  and A- = ( 4 1  + K ] ,  p )  whose angular functions are the two by four arrays 
[71 H A *  (+) 

Iim 6 - ( ~ )  = g,-(+)R;-(r) +s ,+(+)R;+(r )  
r - r m  

Tf(?) are the standard Dirac two-spinor angular-momentum functions. 
The denominator in equation (8) becomes 

where the R s  and fi+s are both two-component column arrays that are functions of r only. 
This determinant can be expanded as 

W[{'5*1; (i:ll= w [a+; ti+] A- w [a-; ti+]A+ - w [R-; ti+],_ w [R+; ti+],+. (12) 

Each of these two-component Wronsldans are evaluated asymptotically between pairs of 
radial functions belonging to the same angular-momentum channel as indicated by the suffix 
attached. The right-hand side of equation (12) is minus the denominator of the expression 
for the s-matrix given by Ebert and Gyorffy [3]. 

The inner Wronskian in the numerator of equation (10) reduces to terms such as 
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which in part cancel with the denominator to give the following formula for the s-matrix 

- 
where U signifies either +, -; A = A', A = A-u with equivalent relationships among the 
primed symbols. 

This formula can be written in terms of Ebert's ,9 and y matrices 

After further algebra 

This formula is invariant on interchange of R*, as it must be. It is entirely equivalent to 
those formulae given in [3] except for a manifestly erroneous index in one of them. 

5. The scattering matrix for negative energies 

It is common knowledge that the positiveenergy s-matrix is unitary and a simple proof of 
this using Wronskian manipulations is given in appendix A of [8]. The argument rehearsed 
there to reach the conclusion St = S-I (equation (A4) of [8]) does not carry over to negative 
energies as it assumes the identity 

fiP(Z, = fi,r(z, 

which is only true for real z = kr (where k is radial momentum) and, hence., positive 
energy. For negative energies, z-= q + i l  (q and p both real) becomes purely imaginary 
and the Hermitian conjugate of h: becomes 

where 

i ( K )  = e ( - K )  e ( K )  - st. 
The additional minus sign before the S, comes from the fact that (s-m,c2)'l2 is imaginary. 
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where fi:T is the two by one row array with elements identical to those of the one by two 
co~umn array Ft:. 

The following holds for any two linearly independent internal solutions labelled by Ql 
and Q 2 :  

W[&Q,; &Q2] = 0 

- - 
- 1  +l -2 +2 -3 +3 

-1 '+I '-L+l '-1,-2 '-l,+Z '-1.-3 '-l,+3 

-'!l,+l '+I,+, '+l,-2 '+l,+2 '+1,-3 '+I,+, 
t 
t t 

t t t t 

-2 - s t 1 , - 2  + ~ t , , - z  s-2,-2 s-2,+2 s-2,-3 L , + 3  

+2 f'LI,+2 -'+1,+2 -'-2,t2 '+2,t2 '+2,-3 't,+3 

-3 fS-1,-3 -'+1,-3 -'-2,-3 +'+2,-3 '-3,-3~ '-3,+3 

+3 -'!l,+3 +'!-l,+3 "-2.t3 -'t2,+3 -'-3.t3 '+3,+3 
t t t 

- - 
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6. Conclusions 

The application of Wronskians to basis-function expansion has been discussed. A general 
Wronskian scattering identity has been derived and shown to give rise naturally to a number 
of results in single-site scattering theory. 

Acknowledgments 

I would like to thank P Miller, B L Gyorffv and J N Sackett for helpful discussions: and J 
E Pendry and R Evans for encouragement to publish this work which was partly financed 
by SERC award 90101004. 

References 

111 Tamura E 1992 Phys Rev. B 45 3271 
121 Butler W H, Zhang X-G and Oonis A 1992 Mater. Res. Soc. Symp. Pmc. 253 205 
[3] E M  Hand Gyorffy B L 1991 1. Phys. F: Met. Phys. IS 451 
[4] Weinbager P 1990 Electmn Scattering Theory for Ordered rmd Disordered Matter (Oxford Ciarendon) 
[q Rose'M E 1961 Relorivirtic Electron Theo~y (New Ymk: Wdey) 
[q Strange P. Staunton J B and Gyorffy B L 1984 1. Phys. C: Solid State Phys. 17 3355 
[7] Lavan S C 1993 Relativistic singlesite scamring uleory for spacefilling potentials PhD Thesis Bristol 

[8] Lovatt S C GyortTy B Land Guo G Y 1993 1. Phys.: Codem. Matter 5 8005 
University 


